2019
DOI: 10.1016/j.procs.2019.09.235
|View full text |Cite
|
Sign up to set email alerts
|

Imbalanced Learning Techniques for Improving the Performance of Statistical Models in Automated Essay Scoring

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
4

Year Published

2021
2021
2023
2023

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(8 citation statements)
references
References 7 publications
0
4
0
4
Order By: Relevance
“…Some researchers applied RUS, NearMiss, SMOTEENN, and SMOTETL [67] to overcome this problem to improve the imbalanced classification. A study in [52] proposed four algorithms based on oversampling and undersampling techniques to minimize the effects of imbalanced problems in predicting essay grading. The distribution of each class is based on a stratified sampling approach so that the training dataset is maintained in the same ratios.…”
Section: Data-level Oversampling Smotementioning
confidence: 99%
“…Some researchers applied RUS, NearMiss, SMOTEENN, and SMOTETL [67] to overcome this problem to improve the imbalanced classification. A study in [52] proposed four algorithms based on oversampling and undersampling techniques to minimize the effects of imbalanced problems in predicting essay grading. The distribution of each class is based on a stratified sampling approach so that the training dataset is maintained in the same ratios.…”
Section: Data-level Oversampling Smotementioning
confidence: 99%
“…Essas pesquisas, em geral, buscam estimar um valor numérico (nota) representando a qualidade global da redac ¸ão com base em diferentes critérios. No contexto das provas no estilo do ENEM, existem trabalhos que buscam estimar a nota geral obtida pela redac ¸ão [Filho et al 2019, Costa et al 2020, Filho. et al 2021] ou aqueles que focam em competências específicas [Lima et al 2018, Passero et al 2019.…”
Section: Trabalhos Relacionadosunclassified
“…Para tentar mitigar esse problema foram utilizados os seguintes métodos de balanceamento disponíveis na biblioteca Imbalanced-learn 7 : Sobreamostragem aleatória, do inglês Random Oversampling, e a Técnica de sobreamostragem minoritária sintética, do inglês Synthetic Minority Oversampling Technique (SMOTE). Esses métodos foram escolhidos por serem comumente usados na literatura em problemas de aprendizado supervisionado em bases de dados desbalanceadas [Kaur et al 2019, Filho et al 2019. Essas técnicas foram utilizadas somente na etapa de treinamento durante o processo de validac ¸ão cruzada, resultando em um conjunto de treino balanceado contendo 1.600 redac ¸ões para cada um dos grupos de notas (0-200).…”
Section: Selec ¸ãO E Avaliac ¸ãO Dos Modelos De Regressãounclassified
“…However, this study has used an imbalance dataset where five scores are used as 0, 50, 100, 150, and 200. The classes of the students' answers were imbalanced therefore, latterly the authors have proposed an improvement in their work of [14]. Using some statistical algorithms, the authors have managed to improve the accuracy of assessment by obtaining 75% of correlation.…”
Section: A Supervised Aesmentioning
confidence: 99%
“…Usually, this type of feature analysis is exploited by the unsupervised technique through a ranking procedure that gives score for each criterion [22], or it could be exploited within a set of rules ([2]; [5]; [12]). On the other hand, this feature analysis can be utilized by a supervised technique through the ranking procedure where the numeric ranks would be fed to a regressor ( [14]; [15]). www.ijacsa.thesai.org…”
Section: A Structurementioning
confidence: 99%