Fast and accurate detection of ripe tomatoes on plant, which replaces manual labor with a robotic vision-based harvesting system, is a challenging task. Tomatoes in adjacent positions are easily mistaken as a single tomato by image recognition methods. In this study, a ripe tomato detection method that combines deep learning with edge contour detection is proposed. Our approach efficiently separates target tomatoes from overlapping tomatoes to detect individual fruits. This approach yields several improvements. First, deep learning requires less time and extracts deeper features than traditional methods for assessing candidate ripe tomato regions. Second, we use Gaussian density function of H and S in the HSV color space to help segment tomato regions from the background, followed by erosion and dilation on the tomato body to separate adjacent tomatoes and remove peripheral subpixels from all detected ripe tomatoes. Third, an adaptive threshold intuitionistic fuzzy set (IFS) method was developed to identify the tomato's edge, and it performs well in detecting blurred edges in overlapping regions. To improve the efficiency and stability of edge detection under natural conditions, we adopted an illumination adjustment algorithm for the tomato image before edge detection. As samples, we collected images showing tomatoes that were separated, adjacent, overlapped, and even shaded by leaves. The widths and heights of these tomato samples were calculated and analyzed to evaluate the detection performance of the proposed method. The root mean square error (RMSE) results for tomato width and height using the proposed method are 2.996 pixels and 3.306 pixels, respectively. The mean relative error percent (MRE%) values for horizontal and vertical center position shift are 0.261% and 1.179%, respectively. These results demonstrate that the proposed method improves tomato detection accuracy and that it can be further applied in the harvesting process of agricultural robots. INDEX TERMS Tomato detection, deep learning, background subtraction, intuitionistic fuzzy set theory (IFS), contour segmentation. XUAN LIU received the B.S. degree in electrical engineering and automation, Nanjing Forestry University, China, in 2018, where he is currently pursuing the M.S. degree in instrument engineering. His research interests include computer vision and machine learning. ZHOU PAN received the B.S. degree in electrical engineering and automation from the Huaian Institute of Technology, China, in 2016. She is currently pursuing the M.S. degree in control theory and control engineering with Nanjing Forestry University, China. Her research interests include computer vision and machine learning.