Current treatments to control pathological or unwanted immune responses often use broadly immunosuppressive drugs. New approaches to induce antigen-specific immunological tolerance that control both cellular and humoral immune responses are desirable. Here we describe the use of synthetic, biodegradable nanoparticles carrying either protein or peptide antigens and a tolerogenic immunomodulator, rapamycin, to induce durable and antigen-specific immune tolerance, even in the presence of potent Toll-like receptor agonists. Treatment with tolerogenic nanoparticles results in the inhibition of CD4+ and CD8+ T-cell activation, an increase in regulatory cells, durable B-cell tolerance resistant to multiple immunogenic challenges, and the inhibition of antigen-specific hypersensitivity reactions, relapsing experimental autoimmune encephalomyelitis, and antibody responses against coagulation factor VIII in hemophilia A mice, even in animals previously sensitized to antigen. Only encapsulated rapamycin, not the free form, could induce immunological tolerance. Tolerogenic nanoparticle therapy represents a potential novel approach for the treatment of allergies, autoimmune diseases, and prevention of antidrug antibodies against biologic therapies.U ndesired immunogenicity can have a profound impact on human health. Allergies, including allergic asthma and severe food allergies, affect ∼20% of the population, and the prevalence has been steadily increasing over the past several decades (1). The prevalence of autoimmune diseases, including multiple sclerosis and type 1 diabetes, is ∼4.5% (2). Unwanted immunogenicity can also affect both efficacy and safety of biologic drugs (3), particularly in the case of protein replacement therapies for the treatment of genetic deficiencies, such as hemophilia A (4) and Pompe Disease (5). Immunomodulatory agents commonly used to control immunogenicity are often broadly immunosuppressive and typically require chronic administration that can lead to reactivation of latent pathogens, development of tumors, and opportunistic infections (6, 7). Therefore, antigen-specific, durable tolerogenic therapy would be highly desirable from an efficacy and safety perspective.Multiple techniques for antigen-specific immunotherapy have been described, although only allergen immunotherapy, wherein low doses of antigen are delivered in the absence of immunomodulating agents, is currently used in the clinic (1). Experimental approaches have included oral administration of antigen, high dose tolerance, and the use of altered peptide ligands (8). Although these methods have been successful in preclinical models, translation to human clinical trials has been largely disappointing (8). Alternative strategies to leverage tolerogenic programming associated with apoptotic cells include conjugating antigen to splenocytes (9-12) or synthetic microparticles (13, 14) or targeting antigen to the surface of red blood cells (15). Other approaches include loading particles with MHC complexes that present relevant peptides i...