Practical sessions facilitate teaching, critical thinking, and coping skills, especially among medical students and professionals. Currently, in ophthalmology, virtual and augmented reality are employed for surgical training by using three-dimensional (3D) eyeball models. These 3D models when printed can be used not only for surgical training but also in teaching ophthalmic residents and fellows for concept learning through tactile 3D puzzle assembly. 3D printing is perfectly suited for the creation of complex bespoke items in a cost-effective manner, making it ideal for rapid prototyping. Puzzle making, when combined with 3D printing can evolve into a different level of learning in the field of ophthalmology. Though various 3D eyeball models are currently available, complex structures such as the cerebral venous system and the circle of Willis have never been 3D printed and presented as 3D puzzles for assembling and learning. According to our knowledge, this concept of ophthalmic pedagogy has never been reported. In this manuscript, we discuss in detail the 3D models created by us (patent pending), for printing into multiple puzzle pieces for effective tactile learning by cognitive assembling.