Designing immersion is the key challenge in virtual reality; this challenge has driven advancements in displays, rendering and recently, haptics. To increase our sense of physical immersion, for instance, vibrotactile gloves render the sense of touching, while electrical muscle stimulation (EMS) renders forces. Unfortunately, the established metric to assess the effectiveness of haptic devices relies on the user's subjective interpretation of unspecific, yet standardized, questions. Here, we explore a new approach to detect a conflict in visuohaptic integration (e.g., inadequate haptic feedback based on poorly configured collision detection) using electroencephalography (EEG). We propose analyzing event-related potentials (ERPs) during interaction with virtual objects. In our study, participants touched virtual objects in three conditions and received either no haptic feedback, vibration, or vibration and EMS feedback. To provoke a brain response in unrealistic VR interaction, we also presented the feedback prematurely in 25% of the trials. We found that the early negativity component of the ERP (so called prediction error) was more pronounced in the mismatch trials, indicating we successfully detected haptic conflicts using our technique. The results can be understood as a first step towards ERPs as a potential metric of haptic immersion in VR. CCS CONCEPTS • Human-centered computing → Haptic devices; Virtual reality;