Biocatalytic surfaces hold promise for future clean methods of chemical synthesis. Biocatalyst films utilizing inexpensive redox proteins can operate in low-toxicity microemulsions with high capacities to dissolve nonpolar reactants. Crosslinked films of myoglobin (Mb) and poly(L-lysine) (PLL) attached to oxidized carbon cathodes gave up to 40-fold larger turnover rates in bicontinuous microemulsions compared to o/w microemulsions and micelles. Larger synthetic turnover rates are correlated with up to 10-fold faster diffusion of solutes in oil phases of the bicontinuous fluids, as measured by voltammetry. Visible and circular dichroism spectra suggest that myoglobin resides in the film in a largely aqueous environment. The reactant sites in films monitored by a fluorescent probe were more polar when films were in CTAB than in SDS microemulsions. These combined results suggest that larger mass transport rates in the bicontinuous fluids is a major factor for enhanced turnover rates. Electrostatic interactions between the charged films and oppositely charged surfactants may significantly influence turnover rates when reactant mass transport is not fast enough.