A series of macroporous beaded terpolymers with epoxy groups were synthesized by suspension polymerization with glycidyl methacrylate (GMA), ethylene glycol dimethacrylate (EGDMA), and the third monomers including styrene, methyl methacrylate, n-butyl acrylate (BA), butyl methacrylate (BMA), and 2-hydroxyethyl methacrylate for immobilization of Candida lipolytica lipase. The effect of various third monomers on loading and activity recovery of immobilized lipase were studied. Terpolymers with BA as the third monomer were found to give the biggest loading of lipase, and the activity recovery of lipase immobilized on poly (GMA-EGDMA-BA) terpolymers reached 79.0%. As the content of BA (%) increasing, the loading of lipase enhanced, but the activity recovery reached 88.5% for the initial stage and decreased to 46.9% at last. The poly(GMA-EGDMA-BA-10) showed an optimal result in lipase immobilization. Lipase immobilized on poly(GMA-EGDMA-BA-10) carriers had broader pH and higher temperature stability.