Uncontrolled enzyme-immobilizer interactions were evident after immobilizing β-galactosidase onto soy-protein isolate-glutaraldehyde-functionalized carrageenan beads. Such interactions triggered shortcomings in the immobilized β-galactosidase (iβGL) thermal and storage stabilities. The thermal stability of the iβGL was somewhat lesser than that of the free βGL. Moreover, the iβGL suffered an initial sharp fall-off in its activity after storing it. Thus, approaches were adopted to prevent the occurrence of such uncontrolled enzyme-immobilizer interactions, and accordingly, boost the stability of the iβGL. These approaches involved neutralizing the covalently reactive GA entities via glycine and also altering the functionalizing GA concentrations. Nonetheless, no improvement was recorded in the iβGL thermal stability and this indicated that the uncontrolled enzyme-immobilizer interactions were not mediated via GA. Another approach was then attempted which involved treating the iβGL with lactose. The lactose-treated iβGL (LT-iβGL) presented superior thermal stability as was verified from its smaller kd and bigger t1/2 and D-values. The LT-iβGL t1/2 values were 5.60 and 3.53 fold higher than those presented by the free βGL at 62 and 65 °C, respectively. Moreover, the LT- iβGL presented loftier ΔG than did the free βGL. The storage stability of the LT- iβGL was also superior as it offered 100.41% of its commencing activity on its 43rd storage day. Thus, it could be concluded that lactose prevented the uncontrolled enzyme-immobilizer interactions. Finally, advantageous galacto-oligosaccharides (GOS) were prepared via the iβGL. The GOS were then analyzed with mass spectrometry, and it was shown that their degree of polymerization reached up to 7.