The cemented phosphogypsum (PG) backfill technique provides a new method for massive consumption of PG, and therefore alleviating the environmental pollution of PG. This study considered the effects of slurry preparation on the performance of cemented PG backfill. A L 16 (4 4 ) orthogonal experiment was designed to analyze four factors, namely the solid content, phosphogypsum-to-binder ratio (PG/B ratio), stirring time and stirring speed, with each factor having four levels. According to the range analysis, the solid content played the dominant role in controlling the bleeding rate, while the setting times strongly depended on the PG/B ratio. In terms of strength development of the backfill, the PG/B ratio was shown to be the most significant factor determining the unconfined compressive strength (UCS), followed by the solid content, stirring time and stirring speed. Furthermore, the results showed that the slurry preparation affected the environmental behavior of impurities that originated in PG. By analyzing the concentrations of impurities in the bleeding water of the slurry as well as the leachates of the tank leaching test, the results showed that the release of F − and SO 4 2− was aggravated clearly with the increase in the PG/B ratio, while the release of PO 4 3− always remained at relatively low levels.