Central nervous regulation of body weight and adipose tissue function is mainly conducted by hypothalamic neurons. Neuronal function depends on the integrity of the membrane lipid microenvironment. Lipid microdomains contain large quantities of cholesterol and glycosphingolipids, including glucosylceramide synthase (GCS) (gene Ugcg)-derived gangliosides. The current study demonstrates that Ugcgf/f//CamKCreERT2 mice with genetic GCS deletion in forebrain neurons, dominantly targeting mediobasal hypothalamus (MBH), display impaired fasting-induced lipolysis accompanied by a decreased norepinephrine content in white adipose tissue (WAT). MBH insulin receptor (IR) levels and signaling are increased in Ugcgf/f//CamKCreERT2 mice. These results are in concordance with reports stating that MBH insulin signaling restrains sympathetic nervous outflow to WAT in fasted mice. In line with the in vivo data, pharmacological GCS inhibition by Genz123346 also increases IR levels as well as IR phosphorylation in insulin-stimulated hypothalamic cells. In addition to studies suggesting that simple gangliosides like GM3 regulate peripheral IR signaling, this work suggests that complex neuronal gangliosides also modulate hypothalamic IR signaling and protein levels. For example, the complex ganglioside GD1a interacts dynamically with the IRs on adult hypothalamic neurons. In summary, our results suggest that neuronal GCS expression modulates MBH insulin signaling and WAT function in fasted mice.The central nervous system (CNS) balances energy intake to energy expenditure, termed body energy homeostasis. Among several other brain regions, the hypothalamic arcuate nucleus (Arc) harbors first-order neurons sensing peripheral energy signals, such as leptin and insulin (1,2). Subsequently, these neurons adapt energy intake to the energy needs of the body by altering their firing pattern and neurotransmitter expression (1-3).Most hypothalamic neuronal subpopulations possess receptors for the energy signals leptin and insulin. In the CNS, both hormones exert anorexic actions by suppressing food intake (4,5). Many reports (6,7) support the hypothesis that hypothalamic insulin and leptin systems act in a concerted manner in order to regulate feeding and glucose homeostasis, as well as body weight. In line with this, a novel concept of hypothalamic insulin/leptin cross talk demonstrates that leptin receptor signaling regulates mitochondrial function in hypothalamic neurons, which directly influences their insulin sensitivity (8). In the hypothalamic Arc, leptin signaling depolarizes anorexigenic proopiomelanocortin (POMC) neurons (3) and hyperpolarizes Agouti-related peptide (AgRP) neurons (9), thereby regulating energy homeostasis and body weight. In addition, central insulin signaling is an important regulator of peripheral glucose homeostasis and fat tissues (10,11). Signaling pathways for leptin and insulin converge on insulin receptor (IR) substrate/phosphatidylinositol 3 kinase (PI3K) in hypothalamic neurons (6,7). It has, however, also ...