Coronavirus disease 2019 (COVID-19) has emerged since December 2019 and was later characterized as a pandemic by WHO, imposing a major public health threat globally. Our study aimed to identify common signatures from different biological levels to enlighten the current unclear association between COVID-19 and Parkinson's disease (PD) as a number of possible links, and hypotheses were reported in the literature. We have analyzed transcriptome data from peripheral blood mononuclear cells (PBMCs) of both COVID-19 and PD patients, resulting in a total of 81 common differentially expressed genes (DEGs). The functional enrichment analysis of common DEGs are mostly involved in the complement system, type II interferon gamma (IFNG) signaling pathway, oxidative damage, microglia pathogen phagocytosis pathway, and GABAergic synapse. The protein-protein interaction network (PPIN) construction was carried out followed by hub detection, revealing 10 hub genes (MX1, IFI27, C1QC, C1QA, IFI6, NFIX, C1S, XAF1, IFI35, and ELANE). Some of the hub genes were associated with molecular mechanisms such as Lewy bodies-induced inflammation, microglia activation, and cytokine storm. We investigated regulatory elements of hub genes at transcription factor and miRNA levels. The major transcription factors regulating hub genes are SOX2, XAF1, RUNX1, MITF, and SPI1. We propose that these events may have important roles in the onset or progression of PD. To sum up, our analysis describes possible mechanisms linking COVID-19 and PD, elucidating some unknown clues in between.
Keywords COVID-19• Parkinson disease • Transcriptome analysis • Regulatory networks • Signaling pathways • Bioinformatics Abbreviations BP Biological process CC Cellular component CNS Central nervous system COVID-19 Coronavirus disease 2019 CS Cytokine storm ETS E26 transformation-specific * Javad Zahiri