Cystic fibrosis (CF) is a genetic syndrome caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene. In CF patients, chief morbidity and mortality are due to pulmonary manifestations. CFTR lack/dysfunction brings an altered ion flux through the airway epithelium and ablation of mucociliary clearance, which in turn ensues in colonization and infection by opportunistic bacterial pathogens and subsequent neutrophil-dominated inflammation. This response eventually leads to the damage of the lung tissue. A host of inflammatory mediators attract, activate, and reprogramme neutrophils to survive (avoiding apoptosis) and produce a wealth of proteases and radical oxygen species. The protease/antiprotease imbalance and oxidative stress have multiple downstream effects, including impaired mucus clearance, increased and self-perpetuating inflammation, and impaired immune responses, thus facilitating and fostering bacterial infections. On the other hand, CFTR lack or dysfunction is likely responsible for alterations in neutrophils concerning chemotaxis, phagocytosis, oxidative burst, degranulation, and neutrophil extracellular trap (NET) formation. A good opportunity to reveal new and non-invasive biomarkers of CF lung disease is the evaluation of circulating neutrophils. Indeed, neutrophil responses are now investigated as outcomes of the aetiological therapies in CF, such as hypertonic saline, antiproteases, CFTR correctors and potentiators.