Environmental factors play an important role in the rise and manifestation of allergic conditions in genetically predisposed subjects. Increased exposure to indoor/outdoor allergens is a significant factor in the development of allergic sensitization and asthma. Recently, strong relationships between the immune response to several highly purified allergens and specific human leukocyte antigen (HLA)-DQ and -DR haplotypes have been reported. The major antigens from clinically important allergens have been cloned and sequenced. However, whether innate structural features of major allergens or peculiar immune recognition of these molecules contribute to the overly robust immune responses is not known. We generated and used transgenic (tg) mice expressing single HLA class II transgene(s) to characterize the allergen epitopes presented by particular HLA class II molecules. Next, we generated in vivo models for asthma in the HLA tg mice by intranasal challenge with allergenic extracts. Furthermore, we used a single epitope to induce an allergic lung inflammation. Our system offers a sophisticated technique for systematically identifying the genetic (individual human class II) and antigenic (individual allergenic epitopes) basis of asthma sensitivity and has important implications for new treatment strategies.