Neospora caninum is an apicomplexan cyst-forming parasite that is considered one of the main causes of abortion. The pathogenic mechanisms associated with parasite virulence at the maternal-foetal interface that are responsible for the outcome of infection are largely unknown. Here, utilizing placentomes from cattle experimentally infected with high-virulence (Nc-Spain7) and low-virulence (Nc-Spain1H) isolates, we studied key elements of the innate and adaptive immune responses, as well as components of the extracellular matrix (ECM), at 10 and 20 days post-infection (dpi). The low-virulence isolate elicited a robust immune response characterized by upregulation of genes involved in pathogen recognition, chemokines and pro-inflammatory cytokines, crucial for its adequate control. In addition, Nc-Spain1H triggered the expression of anti-inflammatory cytokines and other mechanisms implicated in the maintenance of ECM integrity to ensure foetal survival. In contrast, local immune responses were initially (10 dpi) impaired by Nc-Spain7, allowing parasite multiplication. Subsequently (20 dpi), a predominantly pro-inflammatory Th1-based response and an increase in leucocyte infiltration were observed. Moreover, Nc-Spain7-infected placentomes from animals carrying non-viable foetuses exhibited higher expression of the IL-8, TNF-α, iNOS and SERP-1 genes and lower expression of the metalloproteases and their inhibitors than Nc-Spain7-infected placentomes from animals carrying viable foetuses. In addition, profound placental damage characterized by an alteration in the ECM organization in necrotic foci, which could contribute to foetal death, was found. Two different host-parasite interaction patterns were observed at the bovine placenta as representative examples of different evolutionary strategies used by this parasite for transmission to offspring.