Background: As the SARS-CoV-2 virus remains one of the main causes of severe respiratory system infections, the Food and Drug Administration strongly advises the continuation of current vaccination programs, including the distribution of updated boosters, especially in high-risk groups of patients. Therefore, there is an unceasing need for further research on the safety and, no less importantly, the clinical effectivity of the vaccines, with an extra focus on cohorts of patients with underlying health problems. This study aimed to assess the efficacy of the SARS-CoV-2 vaccine in possibly immunocompromised children with rheumatic disease while utilizing the interferon-gamma release assay (IGRA) as a marker for COVID-19 immunity in the study follow-up. Methods: This prospective study was performed in a group of 55 pediatric patients diagnosed with juvenile idiopathic arthritis. Eight participants were immunized with the Comirnaty mRNA vaccine before the research commenced, while the rest of the group (n = 47) had not been vaccinated against SARS-CoV-2. At the study baseline, the cellular response to the virus antigen was measured using a specific quantitative IGRA in whole blood; subsequently, the anti-SARS-CoV-2 test was performed, marking the antibodies’ levels in serum. Around four months after the enrollment of the last patient in the study, a follow-up survey regarding the events of COVID-19 infection within the cohort was conducted. Results: The study confirmed that all the vaccinated children developed specific T-cell (p = 0.0016) and humoral (p = 0.001 for IgA antibodies, p = 0.008 for IgG antibodies) responses to the inoculation, including those receiving biological treatment and those on conventional disease-modifying anti-rheumatic drugs. The study also showed the different patterns of immunity elicited both after infection and post-vaccination, with higher levels of antibodies and T-cell response after inoculation than after natural exposure to the pathogen. According to the follow-up survey, six children developed PCR-confirmed SARS-CoV-2 infection, whereas the additional 10 patients admitted to having COVID-like symptoms with no laboratory verification. Conclusions: SARS-CoV-2 vaccinations elicit valid immune responses in pediatric rheumatic patients. Including the assessment of T-cell immunity in the evaluation of inoculation-induced immunization can enhance the accuracy of sole humoral response assays.