During acute infection with bacteria, viruses or parasites, a fraction of macrophages engulf large numbers of red and white blood cells, a process called hemophagocytosis. Hemophagocytes persist into the chronic stage of infection and have an anti-inflammatory phenotype. Salmonella enterica serovar Typhimurium infection of immunocompetent mice results in acute followed by chronic infection, with the accumulation of hemophagocytes. The mechanism(s) that triggers a macrophage to become hemophagocytic is unknown, but it has been reported that the proinflammatory cytokine gamma interferon (IFN-␥) is responsible. We show that primary macrophages become hemophagocytic in the absence or presence of IFN-␥ upon infection with Gram-negative bacterial pathogens or prolonged exposure to heat-killed Salmonella enterica, the Gram-positive bacterium Bacillus subtilis, or Mycobacterium marinum. Moreover, conserved microbe-associated molecular patterns are sufficient to stimulate macrophages to hemophagocytose. Purified bacterial lipopolysaccharide (LPS) induced hemophagocytosis in resting and IFN-␥-pretreated macrophages, whereas lipoteichoic acid and synthetic unmethylated deoxycytidine-deoxyguanosine dinucleotides, which mimic bacterial DNA, induced hemophagocytosis only in IFN-␥-pretreated macrophages. Chemical inhibition or genetic deletion of Toll-like receptor 4, a pattern recognition receptor responsive to LPS, prevented both Salmonella-and LPS-stimulated hemophagocytosis. Inhibition of NF-B also prevented hemophagocytosis. These results indicate that recognition of microbial products by Toll-like receptors stimulates hemophagocytosis, a novel outcome of prolonged Toll-like receptor signaling, suggesting hemophagocytosis is a highly conserved innate immune response.