2024
DOI: 10.5121/ijaia.2024.15205
|View full text |Cite
|
Sign up to set email alerts
|

Immunizing Image Classifiers Against Localized Adversary Attack

Henok Ghebrechristos,
Gita Alaghband

Abstract: This paper addresses the vulnerability of deep learning models, particularly convolutional neural networks (CNN)s, to adversarial attacks and presents a proactive training technique designed to counter them. We introduce a novel volumization algorithm, which transforms 2D images into 3D volumetric representations. When combined with 3D convolution and deep curriculum learning optimization (CLO), it significantly improves the immunity of models against localized universal attacks by up to 40%. We evaluate our p… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 23 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?