Transgenic plants expressing recombinant immunoglobulins have arisen as an alternative technology for the large-scale production of antibodies useful in therapeutics and in industrial processes. In the present paper we report the expression in transgenic tobacco ( Nicotiana tabacum ) of an anti-HBsAg [anti-(hepatitis B virus surface antigen)] mouse IgG1 mAb (monoclonal antibody), currently used for the industrial purification of the recombinant vaccine antigen. Using the sweet potato sporamin signal peptide, a KDEL (Lys-Asp-Glu-Leu) ER (endoplasmic reticulum) anchorage domain, and a heavy- and light-chain gene tandem construction, we generated F1 plants in which the expression of the antibody accounted for 0.5% of the total soluble proteins. The 'plantibody' (functional IgG antibody produced in plants) was easily purified by Protein A-Sepharose chromatography with a yield of approximately 35 microg/g of fresh leaf material, and its glycosylation indicated that, irrespective of the KDEL signal, the molecule is modified in both the ER and Golgi. Finally, a successful comparison of the plantibody with the ascites-derived mAb in the immunoaffinity purification of the vaccine recombinant HBsAg was performed. Taken as a whole, our results show that the large-scale production of this antibody of industrial relevance in transgenic tobacco is feasible.