2013
DOI: 10.4172/2157-7471.1000185
|View full text |Cite
|
Sign up to set email alerts
|

Immunocapture Loop Mediated Isothermal Amplification for Rapid Detection of Tomato Yellow Leaf curl Virus (TYLCV) without DNA Extraction

Abstract: To diminish the time required for some diagnostic assays including polymerase chain reaction (PCR), loopmediated isothermal amplification (LAMP; due to mainly DNA extraction step) and also DAS-ELISA into a minimum level, an innovative immunocapture LAMP (IC-LAMP) and immunocapture PCR (IC-PCR) protocol on the basis of Tomato Yellow Leaf curl Virus (TYLCV) genome were used and optimized. Even though DAS-ELISA, IC-PCR and IC-LAMP assays could successfully detect positive infected plant samples, considering the t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 44 publications
0
1
0
Order By: Relevance
“…For plant pathogens, LAMP assays have been developed for fungi (e.g., Aspergillus nomius, A. parasiticus, A. flavus, Fomitiporia torreyae, Fusarium oxysporrum f. sp., lycopersici, Fulviformes umbrinellus, Ceratocystis platani and Alternaria solani) (Luo et al, 2012;Ayukawa et al, 2017;Fukuta et al, 2017;Khan et al, 2018); oomycetes (e.g., Pythium myriotylum, Phytophthora infestans and P. ramorum) (Fukuta et al, 2014;Khan et al, 2017); bacteria (Xylella fastidiosa, Erwinia amylovora) (Harper et al, 2010;Bühlmann et al, 2013;Aglietti et al, 2019;Amoia et al, 2023) and viruses/viroids (e.g., ApNMV, ASPV, ASGV, ACLSV, ASSVd, TMV and TYLCV) (Liu et al, 2010;Dehabadi, 2013;Zhao et al, 2014;Lee et al, 2018;Lu et al, 2018;Nabi et al, 2020;Lee & Jeong, 2022). A common feature of the above methodologies is the use of a sample pretreatment purification step and mostly use of fluorescence probes for lab-based detection, with reported detection limits for plant pathogenic fungi and oomycetes in the range of 2 fg to 100.000 fg/μl reaction (Luo et al, 2012;Ayukawa et al, 2017;Fukuta et al, 2017;Khan et al, 2018).…”
Section: Introductionmentioning
confidence: 99%
“…For plant pathogens, LAMP assays have been developed for fungi (e.g., Aspergillus nomius, A. parasiticus, A. flavus, Fomitiporia torreyae, Fusarium oxysporrum f. sp., lycopersici, Fulviformes umbrinellus, Ceratocystis platani and Alternaria solani) (Luo et al, 2012;Ayukawa et al, 2017;Fukuta et al, 2017;Khan et al, 2018); oomycetes (e.g., Pythium myriotylum, Phytophthora infestans and P. ramorum) (Fukuta et al, 2014;Khan et al, 2017); bacteria (Xylella fastidiosa, Erwinia amylovora) (Harper et al, 2010;Bühlmann et al, 2013;Aglietti et al, 2019;Amoia et al, 2023) and viruses/viroids (e.g., ApNMV, ASPV, ASGV, ACLSV, ASSVd, TMV and TYLCV) (Liu et al, 2010;Dehabadi, 2013;Zhao et al, 2014;Lee et al, 2018;Lu et al, 2018;Nabi et al, 2020;Lee & Jeong, 2022). A common feature of the above methodologies is the use of a sample pretreatment purification step and mostly use of fluorescence probes for lab-based detection, with reported detection limits for plant pathogenic fungi and oomycetes in the range of 2 fg to 100.000 fg/μl reaction (Luo et al, 2012;Ayukawa et al, 2017;Fukuta et al, 2017;Khan et al, 2018).…”
Section: Introductionmentioning
confidence: 99%