To identify genetic factors contributing to psoriasis susceptibility, gene expression profiles of uninvolved epidermis from psoriatic patients and epidermis from healthy individuals were compared. Besides already characterized genes, we identified a cDNA with yet unknown functions, which we further characterized and named PRINS (Psoriasis susceptibility-related RNA Gene Induced by Stress). In silico structural and homology studies suggested that PRINS may function as a noncoding RNA. PRINS harbors two Alu elements, it is transcribed by RNA polymerase II, and it is expressed at different levels in various human tissues. Real time reverse transcription-PCR analysis showed that PRINS was expressed higher in the uninvolved epidermis of psoriatic patients compared with both psoriatic lesional and healthy epidermis, suggesting a role for PRINS in psoriasis susceptibility. PRINS is regulated by the proliferation and differentiation state of keratinocytes. Treatment with T-lymphokines, known to precipitate psoriatic symptoms, decreased PRINS expression in the uninvolved psoriatic but not in healthy epidermis. Real time reverse transcription-PCR analysis showed that stress signals such as ultraviolet-B irradiation, viral infection (herpes simplex virus), and translational inhibition increased the RNA level of PRINS. Gene-specific silencing of PRINS by RNA interference revealed that down-regulation of PRINS impairs cell viability after serum starvation but not under normal serum conditions. Our findings suggest that PRINS functions as a noncoding regulatory RNA, playing a protective role in cells exposed to stress. Furthermore, elevated PRINS expression in the epidermis may contribute to psoriasis susceptibility.