The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and an ongoing global pandemic. Despite the development of vaccines, which protect healthy people from severe and life-threatening COVID-19, the immunological responses of people with secondary immunodeficiencies to SARS-CoV-2 mRNA vaccines are currently not well understood. Human Immunodeficiency Virus (HIV), causing acquired immunodeficiency syndrome (AIDS), targets CD4+ T helper (Th) cells that orchestrate the immune response. Anti-retroviral therapy suppresses HIV burden and restores Th cell numbers. Here, we investigated the humoral and cellular immune responses elicited by the BTN162b2 vaccine in a cohort of people living with HIV (PLWH), who receive anti-retroviral therapy. While antibody responses in PLWH increased progressively after the first and second vaccination compared to baseline, they were reduced compared to HIV negative study participants (controls). CD8+ T cells exhibited a general activated phenotype and increased effector and effector memory compartments. In contrast, CD4+ Th cell responses exhibited a vaccination-dependent increase and were comparable between PLWH and controls. In line with their reduced humoral response, the correlation between neutralizing antibodies and the CD4+ T cell response was decreased in PLWH compared to healthy controls. Interestingly, CD4+ T cell activation negatively correlated with the CD4 to CD8 ratio, indicating that low CD4 T cell numbers do not necessarily interfere with cellular immune responses. Taken together, our data demonstrate that COVID-19 mRNA vaccination in PLWH results in potent cellular immune responses, but the reduced antibody responses suggest that booster vaccination might be required for preventing disease.