Summary
Induced pluripotent stem cell (iPSC)-based cell therapies have a great potential for regenerative medicine, but are also potentially associated with tumorigenic risks. Current rodent models are not the optimal predictors of efficiency and safety for clinical application. Therefore, we developed a clinically relevant non-human primate model to assess the tumorigenic potential and in vivo efficacy of both undifferentiated and differentiated iPSCs in the autologous settings without immunosuppression. Undifferentiated autologous iPSCs indeed formed mature teratomas in a dose-dependent manner. However, tumor formation was accompanied by an inflammatory reaction. On the other hand, iPSC-derived mesodermal stromal-like cells formed new bone in vivo without any evidence of teratoma formation. We therefore show for the first time in a large animal model that closely resembles human physiology that undifferentiated autologous iPSCs form teratomas, and that iPSC-derived progenitor cells can give rise to a functional tissue in vivo.