Background and Objective
A versatile biomarker, survivin, is highly expressed in proliferating cells of multiple cancers in humans and animals. It is an apoptosis-regulating protein, engaging in a cascade of reactions that involve several other genes and protein interactions. Currently, researchers are investigating its therapeutic potential due to the evidence linking its overexpression to advanced-stage lung cancer. This review is centered around examining survivin-related molecular mechanisms and its therapeutic role specifically in lung cancer. Our objective is to discuss the role of survivin in prognosis and treatment response, shedding light on immune-targeted therapies, as well as outlining future directions for survivin-based vaccines in lung cancer.
Methods
The PubMed database and the United States National Library of Medicine search engine at the National Institutes of Health were searched on 24 August 2023 to identify published research studies. Searching “((((((airway [Title/Abstract]) OR (lung [Title/Abstract])) OR (pulm[Title/Abstract])) OR (bronch[Title/Abstract])) OR (nslc[Title/Abstract])) AND (((cancer[Title/Abstract]) OR (carcino[Title/Abstract])) OR (oncol[Title/Abstract]))) AND (survivin[Title/Abstract])” gave 728 results. After screening the title and abstracts and excluding the review articles 168 titles were shortlisted and full text studied. The discussions are added to relevant sections.
Key Content and Findings
Survivin is a cell cycle-dependent, inhibitor of apoptosis protein that contributes to carcinogenesis, tumor vascularization, metastasis, and treatment resistance. Several treatments that impact survivin either directly or indirectly have been reported as effective in treating lung cancer. Immunity-based therapy, a novel approach known for its targeted nature and minimal side effects, is currently under investigation for lung cancer treatment. Emerging survivin-centered vaccines exhibit promising attributes in terms of safety, effectiveness, and ability to stimulate an immune response. These factors point towards a significant potential for advancing the future of lung cancer prevention and enhancing overall survival rates.
Conclusions
Nuclear survivin is a potential biomarker for advanced non-small cell lung cancer. It plays a role in determining drug responsiveness and is found to be significantly elevated in cases of resistance to chemotherapy. Multiple compounds and immunization strategies have been identified to impact lung cancer cells; however, they are currently in the early stages of phase I or phase II clinical trials. The substantial promise of survivin-based immunogenicity-focused treatments warrants in-depth investigation and exploration.