To improve the ecological risk assessment of aquatic pollutants it is needed to study their effects not only in the aquatic larval stage, but also in the terrestrial adult stage of the many animals with a complex life cycle. This remains understudied, especially with regard to interactive effects between aquatic pollutants and natural abiotic stressors. We studied effects of exposure to the pesticide DNP (2,4-Dinitrophenol) and how these were modulated by limited food availability in the aquatic larvae, and the possible delayed effects in the terrestrial adults of the damselfly Lestes viridis. Our results revealed that DNP and low food each had large negative effects on the life history, behaviour and to a lesser extent on the physiology of not only the larvae, but also the adults. Food limitation magnified the negative effects of DNP as seen by a strong decline in larval survival, metamorphosis success and adult lifespan. Notably, the synergism between the aquatic pollutant and food limitation for survival-related traits was stronger in the non-exposed adults than in the exposed larvae, likely because metamorphosis is stressful itself. Our results highlight that identifying effects of aquatic pollutants and synergisms with natural abiotic stressors, not only in the aquatic larval but also in the terrestrial adult stage, is crucial to fully assess the ecological impact of aquatic pollutants and to reveal the impact on the receiving terrestrial ecosystem through a changed aquatic-terrestrial subsidy.