Schistosoma japonicum is the most pathogenic causative form of schistosomiasis that causes a major health problem in its endemic countries. Until now, praziquantel is the only drug used to treat Schistosomiasis, but it does not prevent re-infection. So, repetition of the treatment is needed. Moreover, there is no effective vaccine against S. japonicum. Therefore, an urgent need for the development of vaccines is mandatory. This study aimed to analyze an immunogenic protein, Transitionally Controlled Tumor Protein (TCTP) using an immunoinformatics approach to design a universal peptide vaccine against Schistosoma japonicum. A set of 22 of TCTP sequences were retrieved from NCBI database. Conservancy of these sequences was tested and then conserved B cell and T cell epitopes were predicted using different tools available in IEBD. Epitopes having high scores in both B and T cell predicting tools were proposed. An epitope 129 YEHYI 133 was predicted as a most promising epitope with good prediction scores in surface accessibility and antigenicity. Besides that, epitopes 129 YEHYIGESM 137 and 92 YLKAIKERL 100 were predicted as the most promising epitopes concerning their binding to MHC I and MHC II allele respectively. The study revealed that our predicted epitopes could be used to develop an efficacious vaccine against Schistosoma japonicum in the future especially epitope YEHYIGESM as it is shared between MHC I and II alleles and overlapped with the most promising B cell epitope. Both in vitro and in vivo studies is recommended to confirm the efficacy of YEHYIGESM as a peptide vaccine.