In chickens, colibacillosis is caused by avian pathogenic Escherichia coli (APEC) via respiratory tract infection. Many virulence factors, including type 1 (F1A) and P (F11) fimbriae, curli, aerobactin, K1 capsule, and temperature-sensitive hemagglutinin (Tsh) and plasmid DNA regions have been associated with APEC. A strong correlation between serum resistance and virulence has been demonstrated, but roles of virulence factors in serum resistance have not been well elucidated. By using mutants of APEC strains TK3, MT78, and 7122, which belong to serogroups O1, O2, and O78, respectively, we investigated the role of virulence factors in resistance to serum and pathogenicity in chickens. Our results showed that serum resistance is one of the pathogenicity mechanisms of APEC strains. Virulence factors that increased bacterial resistance to serum and colonization of internal organs of infected chickens were O78 lipopolysaccharide of E. coli 7122 and the K1 capsule of E. coli MT78. In contrast, curli, type 1, and P fimbriae did not appear to contribute to serum resistance. We also showed that the iss gene, which was previously demonstrated to increase resistance to serum in certain E. coli strains, is located on plasmid pAPEC-1 of E. coli 7122 but does not play a major role in resistance to serum for strain 7122.Avian pathogenic Escherichia coli (APEC) belongs to the extraintestinal pathogenic group of E. coli. These bacteria cause airsacculitis, omphalitis, peritonitis, salpingitis, synovitis, and colisepticemia in poultry (17). APEC is also associated with cellulitis or necrotic dermatitis of the lower abdomen and thighs and with granuloma. APEC strains belong predominantly to three serogroups, O1, O2, and O78. Virulence factors associated with APEC strains include type 1 and P fimbriae, curli, aerobactin, K1 capsule, and temperature-sensitive hemagglutinin (Tsh) of the autotransporter family (9, 17). Serum resistance also appears to be an important virulence mechanism of APEC, and it may play a major role in the pathogenesis of avian colibacillosis. For instance, serum resistance has often been associated with isolates from septicemic turkeys and chickens (13,33), and a correlation between serum resistance and virulence and lethality in isolates from septicemic chickens and turkeys has been observed (13,15,17).At this time, it is not known if avian E. coli strains differ from mammalian isolates in their mechanisms of serum resistance and virulence. Studies carried out with mammalian E. coli showed that many virulence factors, such as capsules, lipopolysaccharide (LPS), and outer membrane proteins (OMPs), includingOmpA and the ColV plasmid-encoded proteins TraT and Iss, are associated with complement resistance of E. coli (17). TraT is a surface exclusion protein encoded by conjugative plasmids (32), and Iss is a plasmid-encoded OMP homologous to the Bor protein of bacteriophage (32). In APEC, the role of different virulence factors in serum resistance has generally been speculative. Nolan et al. (22) produced an a...