Human Brucellosis is one of the most common zoonotic diseases worldwide. Disease transmission often occurs through the handling of domestic livestock, as well as ingestion of unpasteurized milk and cheese, but can have enhanced infectivity if aerosolized. Because there is no human vaccine available, rising concerns about the threat of Brucellosis to human health and its inclusion in the Center for Disease Control's Category B Bioterrorism/Select Agent List make a better understanding of the dose-response relationship of this microbe necessary. Through an extensive peer-reviewed literature search, candidate dose-response data were appraised so as to surpass certain standards for quality. The statistical programming language, "R," was used to compute the maximum likelihood estimation to fit two models, the exponential and the approximate beta-Poisson (widely used for quantitative risk assessment) to dose-response data. Dose-response models were generated for prevalent species of Brucella: Br. suis, Br. melitensis, and Br. abortus. Dose-response models were created for aerosolized Br. suis exposure to guinea pigs from pooled studies. A parallel model for guinea pigs inoculated through both aerosol and subcutaneous routes with Br. melitensis showed that the median infectious dose corresponded to a 30 colony-forming units (CFU) dose of Br. suis, much less than the N(50) dose of about 94 CFU for Br. melitensis organisms. When Br. melitensis was tested subcutaneously on mice, the N(50) dose was higher, 1,840 CFU. A dose-response model was constructed from pooled data for mice, rhesus macaques, and humans inoculated through three routes (subcutaneously/aerosol/intradermally) with Br. melitensis.