An ideal wound dressing should create a healing environment that relieves pain, protects against infections, maintains moisture, removes debris, and speeds up wound closure and repair. However, conventional options like gauze often fall short in fulfilling these requirements, especially for chronic or nonhealing wounds. Hence there is a critical need for inventive formulations that offer efficient, cost‐effective, and eco‐friendly alternatives. This study focuses on assessing the innovative formulation based on a microbial‐derived copolymer known as poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate), P(3HB‐co‐4HB) bioactive glass and graphene particles, and exploring their biological response in vitro and in vivo—to find the best combination that promotes cell adhesion and enhances wound healing. The formulation optimized at concentration of bioactive glass (1 w/w%) and graphene (0.01 w/w%) showed accelerated degradation and enhanced blood vessel formation. Meanwhile biocompatibility was evaluated using murine osteoblasts, human dermal fibroblasts, and standard cell culture assays, demonstrating no adverse effects after 7 days of culture and well‐regulated inflammatory kinetics. Whole thickness skin defect using mice indicated the feasibility of the biocomposites for a faster wound closure and reduced inflammation. Overall, this biocomposite appears promising as an ideal wound dressing material and positively influencing wound healing rates.