The recent description of the genus has altered the taxonomy of species. These organisms still belong to the genera of the skin coryneform group, and the most-studied species remains . is also a known skin commensal. This underrecognized microorganism can, however, act as a pathogen after bacterial seeding and can be considered opportunistic, causing either superficial or deep/invasive infections. It can cause numerous infections, including but not limited to breast infections, skin abscesses, infective endocarditis, and device-related infections. The ecological niche of is clearly different from that of other members of the genus: it is found in the axillary region or at wet sites rather than in dry, exposed areas, and the number of microorganisms increases during puberty. Historically, it has been used for its ability to modulate the immune response and for its antitumor properties. Conventional microbial culture methods and identification processes allow for its accurate identification and characterization. Thanks to the modern omics tools used for phylogenomic approaches, understanding pathogenesis (including host-bacterium interactions and virulence factor characterization) is becoming easier, allowing for more thorough molecular characterization. These analyses have revealed that causes diverse diseases mediated by multiple virulence factors. The recent genome approach has revealed specific genomic regions within this species that are involved in adherence and biofilm formation as well as fitness, survival, and defense functions. Numerous regions show the presence of phages and horizontal gene transfer. remains highly sensitive to a broad spectrum of antibiotics, such as β-lactams, fluoroquinolones, macrolides, and rifampin, although erythromycin and clindamycin resistance has been described. A long-term treatment regimen with a combination of antibiotics is required to successfully eliminate the remaining adherent bacteria, particularly in the case of deep infections after debridement surgery.