Peptide signals from the pancreatic islets and the gastrointestinal tract influence the regulation of energy homeostasis by the brain, and the brain in turn influences the secretions of both the islets and the gut. This article focuses on how insulin interacts with the brain to influence food intake, blood glucose, and cognitive behavior. Insulin is secreted in response to changes of ambient glucose, and the levels achieved are directly proportional to body adiposity. Hence, insulin, like leptin, is an adiposity signal. An increased insulin signal in the mediobasal hypothalamus indicates that ample or excess energy is available in the body and elicits responses that limit food intake and reduce hepatic glucose secretion. Increased insulin (and leptin as well) locally within the brain complements other signals that indicate a surfeit of energy in the body, including satiety signals generated by the gut during meals, glucose, and some fatty acids. There is compelling evidence that overlapping intracellular signaling pathways within the mediobasal hypothalamus mediate the overall catabolic response to these diverse metabolic signals. Insulin receptors are also densely expressed in the hippocampus, and insulin acts there to facilitate learning and memory. The function of insulin receptors in other brain areas is poorly understood. Obesity and/or the consumption of diets high in fat render the brain as well as the body insulin resistant. In the hypothalamus, this is manifest as a reduced ability of insulin to reduce food intake and body weight, and in the hippocampus, it is manifest as a reduced ability of insulin to improve learning and/or memory. Diabetes 55 (Suppl. 2):S114 -S121, 2006 T he brain-gut-islet connection refers to the myriad ways in which signals arising in the three arms of this important axis interact among themselves, and at least one overall function of this integrated control system is the regulation of energy homeostasis throughout the body. Many of the interactions of this triad are well known. The brain regulates activity in both the gut and the pancreatic islets directly via the autonomic nervous system and indirectly via changes in food intake and energy expenditure. Peptide hormones and other signals secreted from the gut, in addition to coordinating the digestion and absorption of nutrients, provide the incretin effect that augments prandial insulin secretion. Many of these peptides also serve as critical satiety signals to the brain that limit meal size. Islet hormones influence digestion and control the disposition of ingested nutrients in addition to providing key signals to the brain regarding the level of adiposity and circulating energy. This review focuses on one aspect of this complex network, i.e., the actions of pancreatic insulin within the brain and the pathologies that occur when insulin signaling within the brain is compromised. The topic is timely, with relevant new information appearing almost monthly, and it is also an area of knowledge where the basic tenets are being chall...