Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Glioma is the most common primary cancer of the central nervous system, and around 50% of patients present with the most aggressive form of the disease, glioblastoma. Conventional therapies, including surgery, radiotherapy, and pharmacotherapy (typically chemotherapy with temozolomide), have not resulted in major improvements in the survival outcomes of patients with glioblastoma. Reasons for this lack of progress include invasive tumour growth in an essential organ, which limits the utility of local therapy, as well as the protection of tumour cells by the blood-brain barrier, their intrinsic resistance to the induction of cell death, and lack of dependence on single, targetable oncogenic pathways, all of which impose challenges for systemic therapy. Furthermore, the unique immune environment of the central nervous system needs to be considered when pursuing immune-based therapeutic approaches for glioblastoma. Nevertheless, a range of different immunotherapies are currently being actively investigated in patients with this disease, spurred on by advances in immuno-oncology for other tumour types. Herein, we examine the current state of immunotherapy for gliomas, notably glioblastoma, the implications for combining the current standard-of-care treatment modalities with immunotherapies, potential biomarkers of response, and future directions for glioblastoma immuno-oncology.
Glioma is the most common primary cancer of the central nervous system, and around 50% of patients present with the most aggressive form of the disease, glioblastoma. Conventional therapies, including surgery, radiotherapy, and pharmacotherapy (typically chemotherapy with temozolomide), have not resulted in major improvements in the survival outcomes of patients with glioblastoma. Reasons for this lack of progress include invasive tumour growth in an essential organ, which limits the utility of local therapy, as well as the protection of tumour cells by the blood-brain barrier, their intrinsic resistance to the induction of cell death, and lack of dependence on single, targetable oncogenic pathways, all of which impose challenges for systemic therapy. Furthermore, the unique immune environment of the central nervous system needs to be considered when pursuing immune-based therapeutic approaches for glioblastoma. Nevertheless, a range of different immunotherapies are currently being actively investigated in patients with this disease, spurred on by advances in immuno-oncology for other tumour types. Herein, we examine the current state of immunotherapy for gliomas, notably glioblastoma, the implications for combining the current standard-of-care treatment modalities with immunotherapies, potential biomarkers of response, and future directions for glioblastoma immuno-oncology.
Introduction Despite substantial improvements in standards of care, the most common aggressive pediatric and adult high-grade gliomas (HGG) carry uniformly fatal diagnoses due to unique treatment limitations, high recurrence rates and the absence of effective treatments following recurrence. Recent advancements in our understanding of the pathophysiology, genetics and epigenetics as well as mechanisms of immune surveillance during gliomagenesis have created new knowledge to design more effective and target-directed therapies to improve patient outcomes. Areas covered In this review, the authors discuss the critical genetic, epigenetic and immunologic aberrations found in gliomas that appear rational and promising for therapeutic developments in the presence and future. The current state of the latest therapeutic developments including tumor-specific targeted drug therapies, metabolic targeting, epigenetic modulation and immunotherapy are summarized and suggestions for future directions are offered. Furthermore, they highlight contemporary issues related to the clinical development, such as challenges in clinical trials and toxicities. Expert opinion The commitment to understanding the process of gliomagenesis has created a catalogue of aberrations that depict multiple mechanisms underlying this disease, many of which are suitable to therapeutic inhibition and are currently tested in clinical trials. Thus, future treatment endeavors will employ multiple treatment modalities that target disparate tumor characteristics personalized to the patient’s individual tumor.
We are developing a retroviral replicating vector (RRV) encoding cytosine deaminase as an anticancer agent for gliomas. Despite its demonstrated natural selectivity for tumors, and other safety features, such a virus could potentially cause off-target effects by productively infecting healthy tissues. Here, we investigated whether incorporation of a hematopoietic lineage-specific microRNA target sequence in RRV further restricts replication in hematopoietic lineage-derived human cells in vitro and in murine lymphoid tissues in vivo. One or four copies of a sequence perfectly complementary to the guide strand of microRNA 142-3p were inserted into the 3' untranslated region of the RRV genome expressing the transgene encoding green fluorescent protein (GFP). Viral spread and GFP expression of these vectors in hematopoietic lineage cells in vitro and in vivo were measured by qPCR, qRT-PCR, and flow cytometry. In hematopoietic lineage-derived human cell lines and primary human stimulated peripheral blood mononuclear cells, vectors carrying the 142-3pT sequence showed a remarkable decrease in GFP expression relative to the parental vector, and viral spread was not observed over time. In a syngeneic subcutaneous mouse tumor model, RRVs with and without the 142-3pT sequences spread equally well in tumor cells; were strongly repressed in blood, bone marrow, and spleen; and generated antiviral immune responses. In an immune-deficient mouse model, RRVs with 142-3pT sequences were strongly repressed in blood, bone marrow, and spleen compared with unmodified RRV. Tissue-specific microRNA-based selective attenuation of RRV replication can maintain antiviral immunity, and if needed, provide an additional safeguard to this delivery platform for gene therapy applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.