The evaluation method of load transfer efficiency using falling weight deflectometer is unworkable in remote mountain areas and transportation difficult region. Therefore, a novation method of load transfer efficiency evaluation is proposed using the index of amplitude ratio. Finite element method is applied to study the influence of dowel bar parameters (diameter, length, spacing, and elastic modulus) and pavement structures parameters (thickness and modulus) on load transfer efficiency, frequency, and the ratio of amplitude. Results of finite element model show that the effects of dowel bar and pavement structure parameters on load transfer efficiency and the ratio of amplitude are similar. The load transfer efficiency, frequency, and the ratio of amplitude enhance with the increase of dowel bar diameter, length, and elastic modulus and the decrease of dowel bar spacing. The subgrade modulus has more significant influence on the load transfer efficiency, frequency, and the ratio of amplitude than other pavement parameters. Polynomial function method is utilized to established load transfer mode between deflection-based load transfer efficiency and the ratio of amplitude. The feasibility and reliability of new method is verified by static and dynamic load test. All results are helpful for the development of highway engineering and airport engineering.