Linear gravity anomalies (LGAs) on the Moon have been interpreted as ancient magmatic intrusions formed during the lunar expansion. The composition of such ancient subsurface intrusions may offer hints for the lunar thermodynamic state in the initial stage of lunar history. To pose a first compositional constraint on magmatism related to lunar expansion, this study analyzed the spectrum and gravity around craters on LGAs, such as Rowland, Roche, and Edison craters. Using reflectance spectra around the craters, we first surveyed non‐mare basaltic exposures. To test the LGA excavation scenario as a possible origin of the discovered exposures, we then compared the Gravity Recovery and Interior Laboratory data and post‐cratering gravity simulation with the iSALE shock physics code. Our spectral analysis reveals no basaltic exposure around the Rowland crater. Further, the observed termination of LGA at the crater rim contradicts the gravity simulation, which assumes that LGA predates the Rowland crater. These results suggest that LGA formation might postdate the Rowland formation and that lunar expansion lasted even after the Nectarian age. On the other hand, we found that both Roche and Edison craters possess basaltic exposures in their peripheries. Because the gravity reduction inside Roche crater can be reproduced in our simulation, the discovered basaltic exposures are possibly LGA materials ejected from these craters. The composition of those exposures shows that the LGA intrusions at the two locations are composed of low‐titanium magma, indicating that ancient magma during the expansion did not contain ilmenite‐rich melt, perhaps resulting from the low‐ilmenite content of the ancient upper mantle.