Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Abstract. Rural-to-urban transformation (RUT) is the process of turning a rural or natural land surface into an urban one, which brings about important modifications in the surface, causing well-known effects like the urban heat island (UHI), reduced wind speeds, and increased boundary layer heights. Moreover, with concentrated human activities, RUT introduces new emission sources which greatly perturb local and regional air pollution. Particulate matter (PM) is one of the key pollutants responsible for the deterioration of urban air quality and is still a major issue in European cities, with frequent exceedances of limit values. Here we introduce a regional chemistry–climate model (regional climate model RegCM coupled offline to chemistry transport model CAMx) study which quantifies how the process of RUT modified the PM concentrations over central Europe including the underlying controlling mechanisms that contribute to the final PM pollution. Apart from the two most studied ones, (i) urban emissions and (ii) urban canopy meteorological forcing (UCMF; i.e. the impact of modified meteorological conditions on air quality), we also analyse two less studied contributors to RUT's impact on air quality: (iii) the impact of modified dry-deposition velocities (DVs) due to urbanized land use and (iv) the impact of modified biogenic emissions due to urbanization-induced vegetation modifications and changes in meteorological conditions which affect these emissions. To calculate the magnitude of each of these RUT contributors, we perform a cascade of simulations, whereby each contributor is added one by one to the reference state, while focus is given on PM2.5 (particulate matter with diameter less then 2.5 µm). Its primary and secondary components, namely primary elemental carbon (PEC), sulfates (PSO4), nitrates (PNO3), ammonium (PNH4), and secondary organic aerosol (SOA), are analysed too. The validation using surface measurements showed a systematic negative bias for the total PM2.5, which is probably caused by underestimated organic aerosol and partly by the negative bias in sulfates and elemental carbon. For ammonium and nitrates, the underestimation is limited to the warm season, while for winter, the model tends to overestimate their concentrations. However, in each case, the annual cycle is reasonably captured. We evaluated the RUT impact on PM2.5 over a sample of 19 central European cities and found that the total impact of urbanization is about 2–3 and 1–1.5 µg m−3 in winter and summer, respectively. This is mainly driven by the impact of emissions alone causing a slightly higher impact (1.5–3.5 and 1.2–2 µg m−3 in winter and summer), while the effect of UCMF was a decrease at about 0.2–0.5 µg m−3 (in both seasons), which was mainly controlled by enhanced vertical eddy diffusion, while increases were modelled over rural areas. The transformation of rural land use into an urban one caused an increase in dry-deposition velocities by around 30 %–50 %, which alone resulted in a decrease in PM2.5 by 0.1–0.25 µg m−3 in both seasons. Finally, the impact of biogenic emission modifications due to modified land use and meteorological conditions caused a decrease in summer PM2.5 of about 0.1 µg m−3, while the winter effects were negligible. The total impact of urbanization on aerosol components is modelled to be (values indicate winter and summer averages) 0.4 and 0.3 µg m−3 for PEC, 0.05 and 0.02 µg m−3 for PSO4, 0.1 and 0.08 µg m−3 for PNO3, 0.04 and 0.03 µg m−3 for PNH4, and 0 and 0.05 µg m−3 for SOA. The main contributor of each of these components was the impact of emissions, which was usually larger than the total impact due to the fact that UCMF was counteracted with a decrease. For each aerosol component, the impact of modified DV was a clear decrease in concentration, and finally, the modifications of biogenic emissions impacted SOA predominantly, causing a summer decrease, while a very small secondary effect of secondary inorganic aerosol was modelled too (they increased). In summary, we showed that when analysing the impact of urbanization on PM pollution, apart from the impact of emissions and the urban canopy meteorological forcing, one also has to consider the effect of modified land use and its impact on dry deposition. These were shown to be important in both seasons. For the effect of modified biogenic emissions, our calculations showed that they act on PM2.5 predominantly through SOA modifications, which only turned out to be important during summer.
Abstract. Rural-to-urban transformation (RUT) is the process of turning a rural or natural land surface into an urban one, which brings about important modifications in the surface, causing well-known effects like the urban heat island (UHI), reduced wind speeds, and increased boundary layer heights. Moreover, with concentrated human activities, RUT introduces new emission sources which greatly perturb local and regional air pollution. Particulate matter (PM) is one of the key pollutants responsible for the deterioration of urban air quality and is still a major issue in European cities, with frequent exceedances of limit values. Here we introduce a regional chemistry–climate model (regional climate model RegCM coupled offline to chemistry transport model CAMx) study which quantifies how the process of RUT modified the PM concentrations over central Europe including the underlying controlling mechanisms that contribute to the final PM pollution. Apart from the two most studied ones, (i) urban emissions and (ii) urban canopy meteorological forcing (UCMF; i.e. the impact of modified meteorological conditions on air quality), we also analyse two less studied contributors to RUT's impact on air quality: (iii) the impact of modified dry-deposition velocities (DVs) due to urbanized land use and (iv) the impact of modified biogenic emissions due to urbanization-induced vegetation modifications and changes in meteorological conditions which affect these emissions. To calculate the magnitude of each of these RUT contributors, we perform a cascade of simulations, whereby each contributor is added one by one to the reference state, while focus is given on PM2.5 (particulate matter with diameter less then 2.5 µm). Its primary and secondary components, namely primary elemental carbon (PEC), sulfates (PSO4), nitrates (PNO3), ammonium (PNH4), and secondary organic aerosol (SOA), are analysed too. The validation using surface measurements showed a systematic negative bias for the total PM2.5, which is probably caused by underestimated organic aerosol and partly by the negative bias in sulfates and elemental carbon. For ammonium and nitrates, the underestimation is limited to the warm season, while for winter, the model tends to overestimate their concentrations. However, in each case, the annual cycle is reasonably captured. We evaluated the RUT impact on PM2.5 over a sample of 19 central European cities and found that the total impact of urbanization is about 2–3 and 1–1.5 µg m−3 in winter and summer, respectively. This is mainly driven by the impact of emissions alone causing a slightly higher impact (1.5–3.5 and 1.2–2 µg m−3 in winter and summer), while the effect of UCMF was a decrease at about 0.2–0.5 µg m−3 (in both seasons), which was mainly controlled by enhanced vertical eddy diffusion, while increases were modelled over rural areas. The transformation of rural land use into an urban one caused an increase in dry-deposition velocities by around 30 %–50 %, which alone resulted in a decrease in PM2.5 by 0.1–0.25 µg m−3 in both seasons. Finally, the impact of biogenic emission modifications due to modified land use and meteorological conditions caused a decrease in summer PM2.5 of about 0.1 µg m−3, while the winter effects were negligible. The total impact of urbanization on aerosol components is modelled to be (values indicate winter and summer averages) 0.4 and 0.3 µg m−3 for PEC, 0.05 and 0.02 µg m−3 for PSO4, 0.1 and 0.08 µg m−3 for PNO3, 0.04 and 0.03 µg m−3 for PNH4, and 0 and 0.05 µg m−3 for SOA. The main contributor of each of these components was the impact of emissions, which was usually larger than the total impact due to the fact that UCMF was counteracted with a decrease. For each aerosol component, the impact of modified DV was a clear decrease in concentration, and finally, the modifications of biogenic emissions impacted SOA predominantly, causing a summer decrease, while a very small secondary effect of secondary inorganic aerosol was modelled too (they increased). In summary, we showed that when analysing the impact of urbanization on PM pollution, apart from the impact of emissions and the urban canopy meteorological forcing, one also has to consider the effect of modified land use and its impact on dry deposition. These were shown to be important in both seasons. For the effect of modified biogenic emissions, our calculations showed that they act on PM2.5 predominantly through SOA modifications, which only turned out to be important during summer.
Abstract. Lockdown restrictions in response to the COVID-19 pandemic led to the curtailment of many activities and reduced emissions of primary air pollutants. Here, we applied positive matrix factorisation to particle size distribution (PSD) data from six monitoring sites (three urban background and three roadside) between four European cities (Helsinki, Leipzig, Budapest, and London) to evaluate how particle number concentrations (PNCs) and their sources changed during the respective 2020 lockdown periods compared to the reference years 2014–2019. A number of common factors were resolved between sites, including nucleation, road traffic semi-volatile fraction (road trafficsvf), road traffic solid fraction (road trafficsf), diffuse urban (wood smoke + aged traffic), ozone-associated secondary aerosol (O3-associated SA), and secondary inorganic aerosol (SIA). Nucleation, road traffic, and diffuse urban factors were the largest contributors to mean PNCs during the reference years and respective lockdown periods. However, SIA factors were the largest contributors to particle mass concentrations, irrespective of environment type. Total mean PNCs were lower at two of the urban-background and all roadside sites during lockdown. The response of nucleation and road trafficsvf factors to lockdown restrictions was highly variable, although road trafficsf factors were consistently lower at roadside sites. The responses of diffuse urban factors were largely consistent and were mostly lower at urban-background sites. Secondary aerosols (O3-associated SA and SIA) exhibited extensive reductions in their mean PNCs at all sites. These variegated responses to lockdowns across Europe point to a complex network of sources and aerosol sinks contributing to PSDs.
Abstract. Intergovernmental Panel on Climate Change (IPCC) assessments are the trusted source of scientific evidence for climate negotiations taking place under the United Nations Framework Convention on Climate Change (UNFCCC), including the first global stocktake under the Paris Agreement that will conclude at COP28 in December 2023. Evidence-based decision-making needs to be informed by up-to-date and timely information on key indicators of the state of the climate system and of the human influence on the global climate system. However, successive IPCC reports are published at intervals of 5–10 years, creating potential for an information gap between report cycles. We follow methods as close as possible to those used in the IPCC Sixth Assessment Report (AR6) Working Group One (WGI) report. We compile monitoring datasets to produce estimates for key climate indicators related to forcing of the climate system: emissions of greenhouse gases and short-lived climate forcers, greenhouse gas concentrations, radiative forcing, surface temperature changes, the Earth's energy imbalance, warming attributed to human activities, the remaining carbon budget, and estimates of global temperature extremes. The purpose of this effort, grounded in an open data, open science approach, is to make annually updated reliable global climate indicators available in the public domain (https://doi.org/10.5281/zenodo.8000192, Smith et al., 2023a). As they are traceable to IPCC report methods, they can be trusted by all parties involved in UNFCCC negotiations and help convey wider understanding of the latest knowledge of the climate system and its direction of travel. The indicators show that human-induced warming reached 1.14 [0.9 to 1.4] ∘C averaged over the 2013–2022 decade and 1.26 [1.0 to 1.6] ∘C in 2022. Over the 2013–2022 period, human-induced warming has been increasing at an unprecedented rate of over 0.2 ∘C per decade. This high rate of warming is caused by a combination of greenhouse gas emissions being at an all-time high of 54 ± 5.3 GtCO2e over the last decade, as well as reductions in the strength of aerosol cooling. Despite this, there is evidence that increases in greenhouse gas emissions have slowed, and depending on societal choices, a continued series of these annual updates over the critical 2020s decade could track a change of direction for human influence on climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.