A long-lived magnetar, potentially originating from a binary neutron star system, has been proposed to explain the extended emission observed in certain short-duration gamma-ray bursts (sGRBs), and is posited as a potential central engine to power the engine-fed kilonovae. Previously, the process by which energy is injected into the surrounding ejecta/jet was widely believed to be nearly isotropic. In this study, we employ special relativity magnetohydrodynamic (SRMHD) simulations to investigate the wind injection process from a magnetar central engine. We explore the dynamics and energy distribution within the system and found that the parameter α = uA/uMWN can be used to indicate the collimation of the magnetar wind energy injection, where uA is the local Alfven four-speed and uMWN is the four-speed of the magnetar wind nebular (MWN) formed from wind-ejecta collision. A significant portion of the injected energy from the magnetar spin-down wind will be channeled to the jet axis due to collimation within the MWN. Achieving isotropic energy injection requires a significantly small α that necessitates either an ultra-relativistic expanding MWN or an extremely low magnetization MWN, both of which are challenging to attain in sGRBs. Consequently, a considerably reduced energy budget (i.e. energy per solid angle reduced by a factor of up to 10 with respect to the value under isotropic assumption) is anticipated to be injected into the ejecta for engine-fed kilonovae. Engine-fed kilonovae would appear fainter than originally anticipated.