Eight ruminally cannulated crossbred beef heifers (427 ± 41.2 kg, body weight) were used in a replicated 4 × 4 Latin square to determine the effects of feeding a condensed tannin (CT) extract with high protein diets containing corn dried distillers grains and solubles (DG) on ruminal fermentation, nutrient digestibility, and route of nitrogen (N) excretion. Dietary treatments included [dry matter (DM) basis]: 0 (0DG), 20 (20DG), and 40% DG (40DG), and 40% DG with 2.5% CT extract (1.33% CT) from Acacia mearnsii (40DGCT). The DG and CT extract were substituted for grain in a barley-based diet that contained 91% concentrate and 9% silage (DM basis) and was fed as a total mixed ration once daily. The crude protein concentrations of the diets were 12.9, 16.8, 20.4, and 20.5% for 0DG, 20DG, 40DG, and 40DGCT, respectively. Periods were 5 wk with 2 wk for transition to the DG level of the diets, 1 wk for adaptation to CT, and 2 wk for measurements. Feed offered and refused were measured daily. Total urine and fecal output were collected daily for 4 d consecutively. Data were analyzed using a mixed linear model with diet and period as fixed effects and square and animal within square as random effects. There was no effect (P ≥ 0.22) of CT on DM intake, but 40% DG in the diet (40DG and 40DGCT) decreased (P ≤ 0.015) DM intake compared with 20DG. As a result, nitrogen (N) intake was not different (P > 0.15) among heifers fed 20DG, 40DG, and 40DGCT (313 g N/d) and was less (P ≤ 0.001) for heifers fed 0DG (220 ± 18 g N/d). Apparent total tract N digestibility was less (P ≤ 0.001) in heifers fed 40DGCT (70.6 ± 1.07%) compared with to 0DG, 20DG, and 40DG (78.4%). There was no effect (P = 0.84) of CT (40DGCT vs. 40DG) on the total N output, however, feeding 40DGCT decreased (P ≤ 0.001) the excretion of total urinary N and urea N in urine by 17 and 21%, respectively, compared with heifers fed 40DG and was equivalent (P ≥ 0.12) to the amount excreted by heifers fed 20DG. The reduction of N digestibility reflected the protein binding effects of CT within the gastrointestinal tract and the shift in excess N excretion from labile urea N in urine to bound NDIN and ADIN in feces (P ≤ 0.001) in heifers fed 40DGCT compared with 40DG. Supplementation of CT in high protein diets fed to feedlot cattle reduced urinary N and increased the capture of N in manure to potentially lesson the loss of N as ammonia and provide opportunities for improved nutrient management of beef production.