Muscle regeneration recapitulates many aspects of embryonic myogenesis and is an important homeostatic process of the adult skeletal muscle, which, after development, retains the capacity to regenerate in response to appropriate stimuli, activating the muscle compartment of stem cells, namely, satellite cells, as well as other precursor cells. Moreover, significant evidence suggests that while stem cells represent an important determinant for tissue regeneration, a "qualified" environment is necessary to guarantee and achieve functional results. It is therefore plausible that the loss of control over these cell fate decisions could lead to a pathological transdifferentiation, leading to pathologic defects in the regenerative process. This review provides an overview about the general aspects of muscle development and discusses the cellular and molecular aspects that characterize the five interrelated and time-dependent phases of muscle regeneration, namely, degeneration, inflammation, regeneration, remodeling, and maturation/functional repair.