Summary
Most previous low-salinity-waterflooding studies focused on injection-brine salinity and composition. The question remains: How do the salinity and composition of the reservoir connate water (CW) affect the low-salinity-waterflooding performance? The main objectives of this work are to evaluate the potential of low-salinity waterflooding (LSW) on the performance of oil-recovery improvement by use of Buff Berea sandstone and Bandera sandstone cores; examine the effect of the salinity of the reservoir CW; investigate the role of the cation composition (Na+, Ca2+, and Mg2+) of the reservoir CW; and study the effect of temperature and pore-throat distribution on the performance of LSW.
In this research, 11 spontaneous-imbibition (SI) experiments and six coreflood experiments were performed. Two sandstone types (Bandera and Buff Berea) with different mineralogy compositions were used. Furthermore, ζ-potential measurements were conducted for oil/brine interfaces to investigate the interaction between brine and crude oil interfaces. In addition, coreflood experiments were performed to validate the SI results and examine the effect of the CW-salinity variation.
The reservoir-CW composition had a dominant influence on the oil-recovery rate. The changes in the cation composition of reservoir CW (Ca2+, Mg2+, and Na+) showed a measurable change in the oil-production trend. Reservoir cores saturated with CW containing divalent cations of Ca+2 and Mg+2 showed higher oil recovery than cores saturated with monovalent cations (Na+). The results demonstrate that the SI produced oil ranging from 38 to 69% of original oil in place (OOIP) for high-permeability Buff Berea cores (164–207.7 md), whereas the produced oil of the low-permeability Bandera cores (31.1–39.2 md) ranged from 20 to 51.5% of OOIP at 77 °F and 14.7 psia. In all cases, a measurable ion exchange was observed, whereas there was no significant change in the pH value of the imbibition brine during the experiments. The ion-exchange effect was more pronounced than the pH effect in the low-salinity-waterflooding performance for Buff Berea and Bandera sandstone. The total oil recovery increased from 51.9 to 58.9% OOIP when the divalent-cation (Ca+2 and Mg+2) concentration of the reservoir CW increased from 709 to 12,210 ppm for injected-brine salinity of 500 and 5,000 ppm, respectively. On the other hand, increasing the monovalent-cation (Na+) concentration from 610 to 54,400 ppm resulted in a slight increase in oil recovery (2.3% of OOIP).