Background and Objective
Interstitial lung disease (ILD) encompasses several diverse pulmonary pathologies that result in abnormal diffuse parenchymal changes. When prescribing rehabilitation, several additional factors need to be considered as a result of aging, polypharmacy, and comorbidities manifested in ILD patients. This review aims to discuss issues related to frailty, skeletal muscle and cognitive function that limit physical activities in ILD patients. It will also highlight exercise training and propose complementary strategies for pulmonary rehabilitation.
Methods
A literature search was performed in MEDLINE, CINAHL (inception to October 19th, 2022) using search terms based on concepts of: idiopathic pulmonary fibrosis or interstitial lung disease; frailty; muscular atrophy; skeletal muscle dysfunction; cognitive dysfunction; sleep quality; sleep disorders; anxiety disorders; or depressive disorders. After eligible texts were screened, additional references were included from references cited in the screened articles.
Key Content and Findings
Frailty and skeletal muscle dysfunction are common in ILD. Weight loss, exhaustion, and anti-fibrotic medications can impact frailty, whereas physical inactivity, aging, corticosteroids and hypoxemia can contribute to sarcopenia (loss of muscle mass and function). Frailty is associated with worse clinical status, exercise intolerance, skeletal muscle dysfunction, and decreased quality of life in ILD. Sarcopenia appears to influence wellbeing and can potentially affect overall physical conditioning, cognitive function and the progression of ILD. Optimal assessment tools and effective strategies to prevent and counter frailty and sarcopenia need to be determined in ILD patients. Even though cognitive impairment is evident in ILD, its prevalence and underlying neurobiological model of contributing factors (i.e., inflammation, disease severity, cardiopulmonary status) requires further investigation. How ILD affects cognitive interference, motor control and consequently physical daily activities is not well defined. Strategies such as pulmonary rehabilitation, which primarily focuses on strength and aerobic conditioning have demonstrated improvements in ILD patient outcomes. Future incorporation of interval training and the integration of motor learning could improve transfer of rehabilitation strategies to daily activities.
Conclusions
Numerous underlying etiologies of ILD contribute to frailty, skeletal muscle and cognitive function, but their respective neurobiologic mechanisms require further investigation. Exercise training increases physical measures, but complementary approaches may improve their applicability to improve daily activities.