Heatwaves are acknowledged to be the major meteorological disaster, causing a noticeable impact on humans and animals’ lives during the last few decades. The number, frequency, duration, intensity, and areal extent of the heatwaves are on the rise during recent years. The Maximum temperature data of 2013 is analyzed to assess the synoptic nature, intensity, frequency, and various significant facets of the heatwave over the south peninsular states of Andhra Pradesh and Telangana. Indian subcontinent experienced a major heatwave during 2013, which claimed 1216 human lives. Even though the highest intensity of maximum temperatures is observed in May over major areas of India, the increasing (incidence, duration, number of spells, and the sweltering temperatures) number of heatwaves are observed over many parts of the country. The northwest and southeast coastal regions are the two heat wave prone regions. The advection of heat from the northwest with the aid of north-westerly winds causes heatwaves over northwest India to sweep or move towards India’s southeast and east coast. The heatwave record over south-eastern India, i.e, Andhra Pradesh and the adjoining Telangana state during May 22–24, 2013 were described in this study. Maximum temperatures above 40°C are observed with a sudden rise by 6 to 7°C over the study region. An attempt is made to predict the maximum temperatures 72 hours before the existence of a heatwave at 3 km horizontal resolution using the Advanced core of the Weather Research and Forecasting (WRF) model. Model predicted temperature values match with observations and the statistical metrics show a high index of the agreement, lower values for root-mean-square error and mean absolute error. Atmospheric circulation patterns associated with this heatwave are also presented. The arrest of sea breeze, the hovering of diabatic heat because of subsidence is the factor that abetted the heatwave blockade over the south-eastern part of the country. The WRF model forecasts could present the occurance of the heat wave over AP and Telangana region with 72 hour lead time with high accuracy.