Fire performance measurements of one of the most used firefighting protective ensembles (also called turnout gears), in terms of thermal and smoke hazards, were determined with the cone calorimeter, that of thermal stability were determined with thermogravimetric analyzer, the physical inspection (physical degradation) of the surface done with the scanning electron microscopy, and energy dispersive spectroscopy measurements determined the elemental compositions of the detergent used in washing and the residual elements in the turnout gears. The cone calorimeter results indicated that the values of the thermal performance parameters, namely: peak heat release rate, maximum average rate of heat emission, and fire growth rate index, all decrease with increasing number of washing cycles, while the smoke parameters: peak smoke production rate, smoke growth rate index, total smoke release, and related sustained flaming values, all increase with increasing number of washing cycles. From the thermogravimetric analyzer measurements, the thermal stability of the turnout gears decrease with increasing number of washings.