Despite the increasing interest in the development of novel metal-based compounds for cancer treatment, these molecules are currently poorly characterized in mechanistic terms, due to their multiple macromolecular targets inside the cells. In this review, we show how 1H NMR metabolomics provides a powerful tool to investigate the metabolic perturbations induced by metal-compounds in cells. The chemical identity and concentration of metabolites detected in cell lysates and their respective growth media by NMR can be viewed as a global fingerprint that describes the response to drug treatment. In this framework, the applications of NMR-based metabolomics to study cellular effects induced by the treatment of cells with anticancer metal-based compounds are comprehensively reviewed.