A large number of criteria to model the onset of plasticity for ductile metals have been proposed by researchers in the last century. Strangely, very few researchers have tried to model the stress-induced crystalline phase transformation of Shape Memory Alloys (SMAs) according to yield criteria. This paper focuses on the question: is a yield criterion originally proposed for describing the plastic behavior of metals suitable to model the “pseudoelastic” behavior of SMAs? To answer this question, two yield criteria originally proposed by the present author are used to predict the initial surface of transformation onset of two different SMAs: Cu-Al-Be and Ni-Ti alloy. The predicted initial transformation onset surfaces of the two SMAs are compared with experimental results and existing theories reported in the literature and some significant conclusions and recommendations are given.