Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Thinly laminated and silty deep-water reservoirs of offshore Malaysia have historically posed difficulties in formation evaluation due to complex log responses causing uncertainties in key petrophysical properties like porosity, water saturation, net pay and productivity. Moreover, compartmentalization of the reservoirs due to extensive faulting in this area increases the evaluation challenges. Generally, thinly laminated reservoirs are evaluated either by high-resolution methods, including borehole imaging and whole core analysis; or bulk volumetric approaches, which utilize nuclear magnetic resonance (NMR) and suitable shaly sand saturation equations. Adding silt as an additional component requires a cautious combination of these two approaches. Furthermore, linking the petrophysical evaluation with depositional processes and structural settings using borehole image, acoustic log and formation pressure is key to the future development of the field. Lastly, securing clean formation fluid samples is crucial to design the production strategy. Aforesaid complete dataset was acquired in a deep-water well of offshore Malaysia to assess hydrocarbon potential. While relatively higher resistivity distinguished potential hydrocarbon bearing zones, NMR-based irreducible water saturation was a crucial indicator of possible water-free hydrocarbon production from the silty zones with high water content. Net sand was accurately calculated from the high-resolution borehole image and compared with the standard petrophysical approach. Then, a detail analysis of formation dip, facies and paleo-current direction was performed on borehole image to recognize different depositional processes and structural settings. Formation pressure data was collected extensively to understand reservoir compartmentalization. While the testing zones were selected based on higher free fluid and higher resistivity anisotropy; the precise testing depths on sand laminae were guided by high-resolution borehole image. Later, low contamination downhole fluid samples were collected using focused sampling technique. 2D NMR method and real-time downhole analysis of optical absorbance, refractive indices, fluorescence, density, viscosity and sound speed were used to differentiate formation fluid from the OBM filtrate. The reservoirs were then evaluated integrating the petrophysical properties with the depositional process and structural settings to understand their long-term production potential. This paper represented a case study of an integrated workflow of optimum data acquisition and evaluation of the thinly laminated sand-silt-clay sequence of deep-water reservoirs of offshore Malaysia. Effective and optimum integration of NMR, high-resolution borehole images, formation testing and sampling data provides the robust framework of this formation evaluation workflow to solve the complex petrophysical and geological uncertainties of these reservoirs.
Thinly laminated and silty deep-water reservoirs of offshore Malaysia have historically posed difficulties in formation evaluation due to complex log responses causing uncertainties in key petrophysical properties like porosity, water saturation, net pay and productivity. Moreover, compartmentalization of the reservoirs due to extensive faulting in this area increases the evaluation challenges. Generally, thinly laminated reservoirs are evaluated either by high-resolution methods, including borehole imaging and whole core analysis; or bulk volumetric approaches, which utilize nuclear magnetic resonance (NMR) and suitable shaly sand saturation equations. Adding silt as an additional component requires a cautious combination of these two approaches. Furthermore, linking the petrophysical evaluation with depositional processes and structural settings using borehole image, acoustic log and formation pressure is key to the future development of the field. Lastly, securing clean formation fluid samples is crucial to design the production strategy. Aforesaid complete dataset was acquired in a deep-water well of offshore Malaysia to assess hydrocarbon potential. While relatively higher resistivity distinguished potential hydrocarbon bearing zones, NMR-based irreducible water saturation was a crucial indicator of possible water-free hydrocarbon production from the silty zones with high water content. Net sand was accurately calculated from the high-resolution borehole image and compared with the standard petrophysical approach. Then, a detail analysis of formation dip, facies and paleo-current direction was performed on borehole image to recognize different depositional processes and structural settings. Formation pressure data was collected extensively to understand reservoir compartmentalization. While the testing zones were selected based on higher free fluid and higher resistivity anisotropy; the precise testing depths on sand laminae were guided by high-resolution borehole image. Later, low contamination downhole fluid samples were collected using focused sampling technique. 2D NMR method and real-time downhole analysis of optical absorbance, refractive indices, fluorescence, density, viscosity and sound speed were used to differentiate formation fluid from the OBM filtrate. The reservoirs were then evaluated integrating the petrophysical properties with the depositional process and structural settings to understand their long-term production potential. This paper represented a case study of an integrated workflow of optimum data acquisition and evaluation of the thinly laminated sand-silt-clay sequence of deep-water reservoirs of offshore Malaysia. Effective and optimum integration of NMR, high-resolution borehole images, formation testing and sampling data provides the robust framework of this formation evaluation workflow to solve the complex petrophysical and geological uncertainties of these reservoirs.
In an oil producing S-field within Malay basin, the existence of heterolithic and thinly laminated reservoirs are common. Standard resolution logging tools are incapable to separate inter-bedded sand-shale layers due to their low vertical resolutions and the conventional petrophysical workflow was not robust enough in capturing the actual properties of the laminated sand shale (LSS) reservoirs in S-field. As a result, the estimated permeability did not match the core permeability and required a significantly high multipliers in the dynamic model and the calculated saturation failed to match the Dean-Stark saturation. This paper explains the limitation of the conventional analysis in LSS reservoir and highlights the use of PETRONAS Thin Bed Analysis (TBA) module to estimate the actual reservoir properties in S-field. The case study in this paper shows the best practice to construct the robust fieldwide evaluation of reservoir properties, integrating core to production data and advance logs information, to determine reservoir properties. In LSS reservoirs, the conventional petrophysics outputs are often pessimistic compared to core data. Reservoir Enhancement Modeling and Reservoir Fraction Modeling (REM-RFM) is an in-house PETRONAS TBA methodology for evaluating LSS reservoirs. REM-RFM workflow is designed to obtain the net sand fraction and the actual reservoir properties to describe the reservoirs storage and flow capacity. Sand-shale lamination was quantified by digital core analysis, core UV light binning against the borehole image logs. The triaxial resistivity logs were used as inputs for the Thomas-Stieber method to determine the net sand fraction and the hydrocarbon saturation. Nuclear Magnetic Resonance (NMR) data was also incorporated to confirm the hydrocarbon pore volume on well level. The REM-RFM workflow resulted in the improved reservoir properties compared to the conventional evaluation and were better matched to the core. In the laminated sands, the enhanced shale volume was comparable to the sand streaks seen in UV fluorescence core photo and image logs data, as well the enhanced porosity and permeability were matching well with the core data. Moreover, the water saturation was matching to the saturation from dean-stark core analysis result, comparable to saturation height function model and NMR data, and REM-RFM output were comparable to Thomas-Stieber results. Once the REM-RFM was calibrated in the key wells, the parameters were then applied to the whole field. The in-house REM-RFM module discussed in this paper is an excellent addition to other industry methodologies. This module is basically a continuation of the innovative effort to characterize the conventional clastic reservoirs model performed earlier. It has been proven by applying robust evaluation, the conventional outputs are significantly improved that led to the optimizes the obvious volume of hydrocarbon estimated. In addition to that, the results can be used for reducing the risks in monetizing the opportunities from the heterolithics and laminated sands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.