Hybrid electric vehicles (HEVs) are perceived as a first step toward the future of sustainable transport. Of course, battery electric vehicles (EVs) are currently ideal for what is wanted in the future of transport. However, the lack of infrastructure for these vehicles makes many potential users choose hybrid vehicles. This paper presents an analysis of the influence of hybrid vehicle engines and electric motors on their performance. Three engines with slightly different power levels and similar characteristics were considered for the configured models. Additionally, two electric motors with very different power levels, but a very close maximum continuous torque were used in our models. One was an induction motor and the other was a permanent magnet synchronous motor. The ADVISOR software was used for vehicle configuration and simulation. Series and parallel hybrid vehicles were considered. The main dynamic performances and the fuel consumption rates of the two driving cycles were compared for the configured models. Three conventional models with the same engines used in HEVs were also simulated for reference. The results highlight that, in the case of HEVs, the choice of a combination engine/electric motor is crucial for obtaining the best compromise between a dynamic performance and a low fuel consumption and, implicitly, a low negative impact on the environment.