This paper introduces a joint location-inventory problem, in which facilities become temporarily unavailable. A hybrid approach based on the Markov process and mathematical programming techniques is presented to design the distribution network of a supply chain in an integrated manner. In the first phase, the Markov process derives some performance features of inventory policy. In the second phase, using outputs of the Markov process, the location-inventory problem is formulated as a mixed-integer nonlinear programming model. Moreover, a robust possibilistic programming approach is utilized, which is able to provide a more stable supply chain structure under almost all possible values of imprecise parameters. Since the proposed problem is complicated to solve by means of exact methods, we develop a simulated annealing algorithm in order to find near-optimal solutions in reasonable computational times. The obtained computational results reveal the efficiency and effectiveness of the proposed solution approach. Finally, some insights are provided and the performance of the proposed robust optimization approach is compared to traditional possibilistic chance constrained method.