The study aimed to examine the effect of the hydrostatic extrusion (HE) process on the machinability of Ti grade 2 (Ti) in the turning process. After the deformation with true strain ɛ = 2.28, the microstructure was significantly refined to a grain size of 100 nm, resulting in an increase in the mechanical properties, UTS strength by 190%, YS yield strength by 230%Cutting forces for Ti in the initial state and after HE were analyzed at cutting depths ap = 0.3 mm and 0.5 mm, the variables were cutting speed Vc (20, 30 and 50 m/min) and feed rate f (0.08 and 0.13 m/s).The impact of the microstructure refinement in Ti after HE on the high cutting depth machinability deterioration (ap = 0.7 mm) was identified. This phenomenon is particularly noticeable at lower cutting speeds Vc = 20 and 30 m/min at which cutting forces are higher. Application tests of Ti after HE showed a significantly lower susceptibility to buckling during threading. As a result of the tests carried out for the Ti in the initial state, it was not possible to achieve the tolerance of pitch diameter of the thread required by standards, d2 at two of the three cutting depths tested. In turn, for the Ti after HE, the thread tolerances required by the standards were achieved for all tested cutting depths.