The main objective of this work was to evaluate the combined effect of a biotechnology process, based on selected yeast strains, and a high-pressure homogenization (HPH) treatment on the microbiological quality, structural organization of proteins, chitin content, and antioxidant activity of a mixture of cricket powder (Acheta domesticus) and water. Compared to untreated samples, the cricket matrix treated with HPH four times at 180 MPa promoted the growth of the inoculated Yarrowia lipolytica and Debaryomyces hansenii strains. HPH did not affect the concentration of chitin; however, the combination with microorganisms tended to reduce the content. Although the antioxidant activity increased from 0.52 to 0.68 TAC mM/TE after a 48 h incubation in the control, it was further improved by the combination of HPH and D. hansenii metabolism, reaching a value of 0.77 TAC mM/TE. The combination of the two approaches also promoted a reduction in the intensity of bands with molecular weights between 31 and 21.5 kDa in favor of bands with a lower molecular weight. In addition, HPH treatment reduced the number of accessible thiols, suggesting protein structure changes that may further impact the technological properties of cricket powder.