2020
DOI: 10.1109/access.2020.3008927
|View full text |Cite
|
Sign up to set email alerts
|

Impact of Image Contrast Enhancement on Stability of Radiomics Feature Quantification on a 2D Mammogram Radiograph

Abstract: The present work aimed to evaluate the reproducibility of radiomics features derived from manual delineation and semiautomatic segmentation after enhancement using the Contrast Limited Adaptive Histogram Equalization (CLAHE) and Adaptive Histogram Equalization (AHE) techniques on a benign tumor of two-dimensional (2D) mammography images. Thirty mammogram images with known benign tumors were obtained from The Cancer Imaging Archive (TCIA) datasets and were randomly selected as subjects. The samples were enhance… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
10
0
1

Year Published

2021
2021
2025
2025

Publication Types

Select...
9
1

Relationship

3
7

Authors

Journals

citations
Cited by 31 publications
(18 citation statements)
references
References 31 publications
0
10
0
1
Order By: Relevance
“…Hasil pengujian menyatakan CLAHE lebih bagus dibandingkan dengan AHE dan kelompok manual. Metode ini harus diterapkan untuk memprediksi hasil pada pasien dengan kanker payudara [14].…”
Section: Penelitian Meningkatkan Kontras Gambar Radiografi Menggunaka...unclassified
“…Hasil pengujian menyatakan CLAHE lebih bagus dibandingkan dengan AHE dan kelompok manual. Metode ini harus diterapkan untuk memprediksi hasil pada pasien dengan kanker payudara [14].…”
Section: Penelitian Meningkatkan Kontras Gambar Radiografi Menggunaka...unclassified
“…The mammogram images were enhanced by Contrast Limited Adaptive Histogram Equalization (CLAHE) to improve the quality of the image for better visual and computational analysis before the segmentation process [22,23]. The Active Contour Model (ACM) technique is a semiautomatic iterative region-growing image segmentation algorithm, and the iteration has been set to 200 for every mammogram image.…”
Section: Semiautomatic Segmentation For Region-of-interest (Roi)mentioning
confidence: 99%
“…The result obtained from the experiment shows that TPOTbased selection produces an Auto ML pipeline that performed a conventional grid search for KNN selected model. The important is the consideration of features score in the model [5]. AutoML performance was given in Table 2.…”
Section: B Cad4covid and Automl Performancementioning
confidence: 99%