AimsMucormycosis is a fast‐progressing disease with a high mortality rate. The most important factor determining survival of patients is early and accurate diagnosis. Although histopathology often recognises invasive mould infections at first, histomorphology alone is insufficient in providing an accurate diagnosis. Unbiased molecular methods to detect and identify fungi are promising, yet their role in complementing routine histopathological workflows has not been studied sufficiently.Methods and resultsWe performed a retrospective single‐centre study examining the clinical value of complementing histopathology with internal transcribed spacer (ITS) sequencing of fungal DNA in the routine diagnosis of mucormycosis. At our academic centre, we identified 14 consecutive mucormycosis cases diagnosed by histopathology and subsequent ITS sequencing. Using histomorphological examination, fungal hyphae could be detected in all cases; however, morphological features were unreliable regarding specifying the taxa. Subsequent ITS sequencing identified a remarkable phylogenetic diversity among Mucorales: the most common species was Rhizopus microsporus (six of 14; 42.9%), followed by Lichtheimia corymbifera (three of 14, 21.4%) and single detections of Rhizopus oryzae, Actinomucor elegans, Mucor circinelloides, Rhizomucor pusillus and Rhizomucor miehei (one of 14; 7.1%, respectively). In one case, we additionally detected Pneumocystis jirovecii in the same lung tissue specimen, suggesting a clinically relevant co‐infection. Fungal culture was performed in 10 cases but yielded positive results in only two of 10 (20%), revealing its limited value in the diagnosis of mucormycosis.ConclusionsOur study demonstrates that a combination of histopathology and ITS sequencing is a practically feasible approach that outperforms fungal culture in detecting Mucorales in tissue‐associated infections. Therefore, pathologists might adapt diagnostic workflows accordingly when mucormycosis is suspected.